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Abstract

Swap pricing theory traditionally views swaps as portfolios of forward con-

tracts. This intuition breaks down when swaps are marked-to-market and collat-

eralized to mitigate credit exposure which is current market practice. Marking-to-

market improves recovery rates and hence affects the default-adjusted rates used

to discount swap cash flows. Marking-to-market also results in intermediate cash-

flows and it is costly to post collatera. We show that collateralized swap rates

differ from those obtained by viewing swaps as portfolio of forward contracts. Ig-

noring collateralization introduces significant biases in swap rates, especially for

long dated swaps.
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1 Introduction

The over-the-counter interest rate swap market has grown exponentially in the last two

decades. The notional amount of swaps that is currently outstanding is estimated at

nearly $70 trillion US dollars.1 The rapid growth of this market and the diversity of

institutions who take positions in swaps have led to concerns about the integrity of

the swap contracts and the potential for a systemic failure arising out of defaults in

the swap markets.2 To mitigate the bilateral counterparty credit exposure, institutions

often turn to credit enhancement procedures.3 The most popular of which is the posting

of collateral in the amount of the current mark-to-market (MTM) value of the swap

contract (ISDA (1999, page 3).

The traditional approach to swap valuation in Sundaresan (1991) and Duffie and

Singleton (1997) views swaps as portfolios of forward contracts on the underlying inter-

est rate. Current market practice requires that swap contracts are marked-to-market

and collateralized typically on a daily basis. This credit enhancement results in two

important departures from the traditional approach. First, MTM and collateralization

generates intermediate payments between the counterparties. Since these cash pay-

ments can induce economic costs/benefits to the payer/receiver (either directly or via

an opportunity cost of capital), they must be accounted for in valuation. Second, col-

lateralization and MTM change the credit risk exposure of the swap. Collateralization

and MTM reduce losses conditional on default and the reduction in credit risk can be

dramatic: Collin-Dufresne and Solnik (2000) and He (2001) argue that the market treats

swaps as default-free due to collateralization and marking-to-market.

In this paper, we provide a theory of swap valuation when the contracts are collat-

eralized and marked-to-market. We assume that counterparties post U.S. dollar (USD)

cash as collateral and mark the contracts to the market value of the contract. Although
1See www.isda.org for 2001 year end survey results.
2See Economist, June 10, 2000 for danger signs in swaps markets.
3For a general discussion of these types of procedures, see for example: “An Introduction to Credit

Enhancement Techniques,” by JP Morgan. For information regarding common market practices, see
the “Guidelines for Collateral Practictioners” and “2000 Collateral Survey” from ISDA or “Collateral
in wholesale financial markets: trends, risk management and market dynamics” from the Bank for
International Settlements for background on market practices.
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cash is certainly not the only form of collateral, it is the most popular form of accepted

collateral (ISDA (2000), p. 2).4 In a discrete-time setting, we show that collateraliza-

tion and marking-to-market result in intermediate cash flows in the swap contract that

appear in the form of a stochastic dividend where dividend rate is the cost of posting

collateral. This result is similar to the result of Cox, Ingersoll and Ross (1981) who

show that the marking-to-marking that occurs in futures contracts results in stochastic

dividends.

In continuous-time, we model counterparty credit risk via an exogenous random

time τ which indicates default. We follow Duffie and Singleton (1997) and assume that

LIBOR is priced using a default-adjusted short rate. Unlike Duffie and Singleton (1997),

the occurence of default in the swap and LIBOR markets are not concurrent. In this

framework, we prove that the continuous posting of collateral in the mark-to-market

value of the swap implies that swap contracts are risk free. Moreover, if there is no

cost to posting and maintaining collateral, swaps are priced as in He (2001) and Collin-

Dufresne and Solnik (2000) by discounting net swap payments at the risk free rate.

More generally, collateral is not costless and we provide closed form solutions (up to

ODE’s) for swap rates in the presence of costly collateral when the state variables are

affine processes. In this case, it is interesting to note that the cost of posting collateral

provides an additional factor that only effects swap rates: it has no impact on default-free

securities or on LIBOR. This could provide insight regarding the time series movements

of interest rate swap spreads.

Empirically, we show how various assumptions generate different swap curves. Taking

the swap curves of Duffie and Singleton (1997) as a benchmark, we show that the swap

curve when collateral is costly is higher than the collateralized swap curve when it is

costless to post collateral. Next, for typically parameterizations, we show that the costly

collateral swap curve is higher than the costless collateral collateral swap curve, but is

less than a LIBOR futures contract.

Paramount to understanding the impact of collateralization is the cost of posting

collateral. What exactly is this cost? Is it an interest rate spread or just the abstract
4Cash collateral may be the cheapest form of collateral in many cases because of the large haircuts

required for risky securities and the valuation issues involved in determining the risk in collateral.
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oppurtunity cost of capital? To investigate this, we estimate a multi-factor term structure

model. The risk-free term structure (estimated from Treasuries) is modeled as a two

factor model with the short rate and a time-varying central tendency. This is the same

risk-free term structure as Collin-Dufresne and Solnik (2000). We use a single-factor to

model the spread between instantaneous LIBOR and Treasuries and also specify that

a single factor (which can be correlated with the other three factors) captures the cost

of posting cash collateral. These last two factors are extracted from LIBOR and swap

rates.

Empirical work to be completed.

Our theory has a number of important implications. First, swap rates are no longer

given as par rates off the permanantly refreshed LIBOR curve. Empirical work on

swaps rates assume swap rates are par rates off the defaultable LIBOR curve. Recent

work using this formulation includes Duffie and Singleton (1997) and Liu, Longstaff and

Mandell (2000) who use this formulation in exploring the swap spreads and Piazzesi

(2000) who examines the effect of Fed actions on swap rates. If the swap contracts are

collateralized, this formulation will, in general, result in a misspecification bias in the

empirical results.

Second, we examine the common market practice of bootstrapping the swap curve

to obtain zero coupon bond rates. For the LIBOR market, since zero coupon bonds

do not typically exist past 1 year, zero coupon bonds prices are typically extracted

(bootstrapped) from the par representation of swap rates by interpolating between swap

rates.5 However, with collateralization, this representation no longer holds. Extracting

zeros from swap rates to construct forward curves and price interest rate derivatives, is

not a valid procedure. In fact, we show that there is not a simple relationship between

zeros and swap rates and that one must use a term structure model to extract zeroes

(this is similar to the current model-based practice of using a term-structure model to

back out forwards from futures data).
5We ignore the short end of the curve where futures rates are adjusted in an ad-hoc manner to obtain

forward rates.
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Last, we examine the pricing of swaptions. If swaps are collateralized, a swaption is

not simply the price of an option on a coupon bond with the strike price equal to par.

Section 2 discusses the institutional features of collateralization in the fixed income

derivatives market. Section 3 values swaps under collateralization in both discrete and

continuous-time. Section 4 considers some theoretical and empirical examples. Section

5 analyzes the effect of collateralization on bootstrapping and the pricing of swaptions.

Section 6 concludes.

2 Institutional Features of Collateralization

As mentioned earlier, the rapid growth of the interest rate swap market and the diversity

of institutions who take positions in swaps have led to concerns regarding the creditwor-

thiness of counterparties. In order to mitigate their credit exposure, institutions often

turn to various credit enhancement procedures. Posting of collateral, either in the form

of cash or marketable securities, is the most prominent method of credit enhancement.

It is important to note that while mitigating credit risk is a primary reason for col-

lateralizing derivative transactions, collateral also has other private and social benefits.

First, frequent posting and marking-to-market of collateral constrains firms from taking

too much leverage, which recently occurred in the market stress of late summer-fall 1998.

Second, collateral reduces regulatory capital requirements. According to the Basle ac-

cord, collateralized transactions often generate a zero credit risk weighting, which frees

up scarce capital for other purposes. Third, using collateral expands the list of potential

counterparties as institutions are less concerned about the credit risk of the counter-

party provided they are willing to collateralize the transaction. This increases volume

and liquidity in swap markets, providing a market wide social benefit of lower spreads

and greater competition.

Because of its success, the use of collateral is widespread and growing. The Interna-

tional Swaps and Derivatives Association [ISDA] in their survey of year 2000 estimated

that the number of collateralized counterparties is in the range of 1500 to 2500 with

a total reported 12,000 signed collateral agreements. The annual growth of collateral

agreements was 39% from 1998 to 1999 and projected to increase by 34% from 1999 to
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2000. The size of the institutions play a big part in the extent of collateralizing. Large-

scale established institutions have collateralized 55% of their OTC derivatives trading

[of which swaps are a part] by 1999. Mid-scale established institutions have collateral-

ized 34% of their trades. ISDA (2001) found that more than 65% of swap transactions

are collateralized according to the Credit Annex to the Master Swap Agreement. ISDA

further estimated that the total collateral in circulation in 1999 was $138 billion.

New institutions such as SWAPCLEAR have been established with the stated pur-

pose of mitigating the credit exposure in the swap markets through large-scale marking-

to-market and netting. The development and maintenance of a collateral management

program that will support OTC derivatives transactions requires considerable resources.

The operating budget for large-scale firms to mount and maintain such a collateral

program is estimated by ISDA at US $5 million per annum.

Most of the collateral posted was in the form of USD cash or US government secu-

rities, although foreign currencies, major index equities and corporate bonds can also

be posted. Together, according to ISDA (2000), cash collateral and U.S. government

securities cover about 70% of the posted collateral. Securities whose value changes over

time (all collateral accept for USD cash), are more difficult to deal with as the receiver

must deal with the risk that the payer will default and the value of the securities posted

might fall below the market to market value of the swap. Because of this, non-cash

collateral is typically subject to nontrivial haircuts. Due to this, there is an increasing

trend toward the use of USD cash collateral.

The collateral no matter what or how it is posted entails a cost. The easiest way

to see this is that the receiver of the collateral, when allowed, will typically re-use

or re-hypothecate the collateral for other purposes. In fact, according to ISDA, 83%

of collateral is reused indicating the economic benefits to the user. For example, the

receiver of USD cash can invest it at LIBOR and typically pays the payer less, usually the

repo rate. This implies that the receiver of collateral will earn the LIBOR-Repo spread

on any received cash collateral. Other securities generate even greater opportunity

costs. Treasury and Agency securities can be repo’d out with the collateral holder/payer

receiving/losing the benefit. In general, the repo rate on government securities is far

greater than the collateral spread and so the opportunity cost of cash collateral will be
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a lower bound on the opportunity cost.

In a swap contract, the mark-to-market (MTM) procedure typically works as follows.

At inception, the swap rate is set so that the present value of all future cash flows is

zero. After time passes, however, the present value of the future swap payments varies

and the seasoned swap does not generally have zero present value. Because of this,

the party whose leg of the swap has negative present value (under water) typically is

required to post collateral in the amount equal to the current MTM value of the future

swap payments.

Ideally, at each point in time the parties would take an observed market price for the

seasoned swap and then mark the contract to market using collateral. In some cases,

there may not be market prices available and in this case, the market value is computed

using a term structure model.

3 Swap Valuation

This section reviews the traditional approach to swap valuation and provides swap val-

uation in discrete and continuous-time.

3.1 The Traditional Approach

In this section, we briefly review the traditional approach to swap valuation. We focus

on fixed-for-floating interest rate swaps. In this case, Party A pays Party B the fixed

swap rate, s0, and Party B pays Party A a floating rate. In our case, we always assume

the floating rate is indexed to 6-month LIBOR. The floating payment can be either the

value of the floating rate at the time of the exchange or it can be the value 6-month

previous (settled-in-arrears).

To begin, we follow Duffie and Singleton (1997) and assume that discretely com-

pounded LIBOR rates are computed from bond prices that embody default risk. That

is, we assert the existence of a risk adjusted instantaneous spot rate, Rt, such that

τ − period LIBOR is given by:

L (T, τ ) =
1

τ

·
1

P (T, τ)
− 1
¸
where PR (T, τ) = EQT

h
e−

R T+τ
T

Rtdt
i
.
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We use a subscript to denote time on the state variables and (t, s) to denote current

time (t) and contract maturity (s) for prices and yields. The risk-adjusted spot rate is

given by Rt = rt + δt where where rt is the default-free short rate and δt is the spread

between instantaneous LIBOR and the default free rate. In Duffie and Singleton (1997),

δt = λtht where ht is the exogenous hazard process and λt is the fractional default loss.

Intuitively, the probability of default over a short interval ∆ is ht∆ and (1− λt) is the

fraction of the market value of the bond recovered conditional on default. Alternatively,

we could follow Lando (1996) and assume that there is no recovery which implies that

ht = 1.

To value a swap contract, Duffie and Singleton (1997) make the following assump-

tions:

1. They assume that default risk is exogenous. This implies that λt and ht are not

functions of the swap value and are instead functions of exogenous state variables.

2. They assume that both of the swap counterparties have a credit rating equal the

average member of the LIBOR panel for the life of the swap.6

3. They assume that both parties have the same credit quality. Duffie and Huang

(1996) relax this assumption and show that for reasonable assymetric variation in

credit quality, there are only small changes in the swap rates.

4. They assume that the default times and recovery rates in the LIBOR and swap

markets are the same. As DS (1997) point out, there is no reason to believe that a

default event in the over-the-counter derivatives market will coincide with a default

event in the LIBOR market.

Of these assumptions, we relax, to some extent, 2, 3 and 4 below. Together, these

assumptions imply that swap payments are discounted at Rt. In the case of a single

period swap, the market fixed rate solves:

EQ0

h
e−

R T
0 Rtdt (s0 − L (T, τ ))

i
6Posting of Libor. Actually, for USD swaps, since 1995, 16 banks have been polled the bottom and

top four quotes are removed and the others are averaged.
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where L (T, τ ) can be τ − period LIBOR at time T or τ − period LIBOR at time T − τ .

This implies that

sR0 =
EQ0

h
e−

R T
0 RtdtL (T, τ )

i
PR (0, T )

.

When you have a multi-period swap settled-in-arrears on 6-month LIBOR, DS (1997)

show that the fixed swap rate is given by:

sR0 = 2
1− P (0, T )P2T
j=1 P

¡
0, j

2

¢
which is the familiar par rate representation of swap rates. This formulation is used for

empirical work, see DS (1997), Piazessi (2001), Liu, Longstaff and Mandel (2002), and is

also the basis for pricing swap derivatives as the par representation implies that options

on swaps can be viewed as an option on a par-rate coupon bond.

3.2 The Impact of Collateral on Swaps: Discrete Time

In this section, we provide a discrete-time approach to valuing interest rate swaps subject

to collateralization. This model-independent formulation draws on the insights of Cox,

Ingersoll and Ross (1981). For reasons that will become clear we focus initially on a

single period swap that is priced at date 0 for payment at date T . Subsequently, we

generalize the result to multi-period swaps with discrete resets and payment dates.

To understand the difference in cash-flows between collateralized and uncollateralized

swap transactions, consider the following 2-period example with three dates, t = 0, 1

and 2. We assume that USD cash collateralization is used in the swap. At the end of

period 2, party A agrees to pay party B a fixed rate and receive the floating rate. In

addition, at the end of period 1, the parties agree to mark the swap to market via USD

cash collateralization. We assume the parties are symmetrical and that both parties can

borrow and lend at LIBOR and the receiver of collateral will credit the payer with the

riskless rate (repo). This is consistent with current market practice.

• At time 0, the swap rate, s0, is set to make the present value of future cash flows
zero. Therefore S0 = 0.
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• At time 1, suppose the market value of the seasoned swap is S1 > 0. Party B pays
Party A $S1.

• At time 2, Party A receives a benefit from holding the collateral in the amount of

S1y1; party B entails a cost of posting collateral in the amount of S1y1. The swap

value is now S2 = (l2 − s0).

Given that collateralization is specified in the original swap agreement, the current

swap rate is set to so that the present value of the contract is zero:

0 = PV0 [(l2 − s0) + S1y1] .

This is different from the uncollateralized formulation where the swap rate solves

0 = PV0 [S2, 2] = PV0 [LIBOR2 − x0, 2] ,

where we intentionally do not specify what interest rate (default-free or default-risky) is

used to discount the cash flows.

What is the impact of marking-to-market and collateralization? There are three

main implications. First, MTM and collateralization result in a stochastic dividend

at the intermediate time-period, S1y1. This implies that collateralized swaps are no

longer portfolios of forward contracts. This result is reminiscent of the results of Cox,

Ingersoll and Ross (1981) who demonstrate that, due to marking to market, futures and

forward rates are significantly different.7 Second, MTM and collateralization will alter

the recovery characteristics in the case of default. If Party B defaults on Party A, Party

A will lose a maximum of l2 − s0 + S1y1 which is less than l2 − s0. Third, as noted in
the references earlier, collateralization may reduce the probability that Party B defaults

as their leverage has been reduced.

In order to formally incorporate default, the next section formally models default

and recovery, both in the LIBOR market and the swaps market.
7Collateralized and marked to market swap rates are not the same as a futures rate on Libor,

although there is some similarity. The reason is that collateralized swaps are marked to the present
value of future cash-flows and not the current futures rate. In addition, when positions are marked to
market, the cash can be taken out of the margin account.
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3.3 The Impact of Collateral on swaps: Continuous-Time

We now turn to the continuous-time valuation of swaps. Following Duffie and Singleton

(1997), we take a reduced form approach to valuing (potentially) defaultable securities.

This powerful approach allows us to focus on exactly how various assumptions effect

swap valuation in a consistent manner.

We retain Duffie and Singleton’s (1997) assumptions regarding default in the LIBOR

market and assume that the occurence of default in the swap contract can be represented

by a first jump time, τ , of jump process with a (potentially stochastic) intensity h. We

let 1[τ>T ] = 1 if there is no default by time T . What are the default characteristics of the

contract? We assume that upon default, there is no recovery in excess of any collateral

posted. (Legally, is this the case). For the interesting cases, this assumptions is of no

consequence. Unlike DS (1997), we do not assume that the counterparties are refreshed

and remain at LIBOR quality throughout the life of the swap, we do not assume that the

swap and LIBOR market share the same default characteristics and we do not directly

assume that the counterparties are symmetric (more on this below).

What is the value of a swap in this setting? First, consider the case where it is

costless to post and maintain collateral and assume that the contracts are continuously

marked and the amount of collateral posted at time τ is given by Cτ . In practice,

they are typically marked-to-market at least daily with the option to demand additional

collateral in the case of large market moves.8 In this case, the price of the swap, St, is

given by the usual default-adjusted discounted value of the cash-flows:

St = E
Q
t

h
e−

R T
t
rsdsΦT1[τ>T ] + e

− R τ
t
rsdsCτ1[τ≤T ]

i
where ΦT = l (T, τ) − s0 and S0 = 0 and s0 is the fixed swap rate. The first term in

the value of the swap, e−
R T
t rsdsΦT , is the present value of the cashflows conditional on

no default and the second component, e−
R τ
t
rsdsCτ , is the present value of the amount

received conditional on default prior to time T, Cτ .

If we assume that the collateral is posted in the amount of the marked-to-market

value of the collateralized swap, Ct = St, we have that the swap price process solves (for
8See, for example the documentation of marking-to-market at SwapClear.
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t < τ)

St = E
Q
t

h
e−

R T
t
rsdsΦT1[τ>T ] + e

− R τ
t
rsdsSτ1[τ≤T ]

i
which is just a contract with a random termination time. An application of the law of

iterated expectations implies that

St = E
Q
t

h
e−

R T
t
rsdsΦT

i
.

Note that an implication of the pricing formula is that the swap contract contains no

credit-risk as recovery, in the event of default, is full. This provides a justification for

the formula of Collin-Dufresne and Solnik (2000). Second, note that unless St = Ct, the

contract is not risk free in general and there is residual default risk.

Next, consider the case with costly collateral. If we assume that the instananeous

cost to posting collateral is ys ≥ 0, then we have that for t < τ

St = E
Q
t

h
e−

R T
t rsdsΦT1[τ>T ] + e

− R τt rsdsCτ1[τ≤T ]
i
+ (1)

EQt

·
1[τ≤T ]

Z τ

t

e−
R s
t ruduysCsds+ 1[τ>T ]

Z T

t

e−
R s
t ruduysCsds

¸
. (2)

The first term is the value of the final swap payments conditional on no default, the

second is the value of the collateral seized conditional on default, the third is the present

value of the oppurtunity cost of the collateral up to a default time and the last term is

the value of the collateral. Assuming that Cs = Ss (the contract is marked to the swap

value), we have that

St = E
Q
t

·
e−

R T
t
rsdsΦT+

Z T

t

e−
R s
t
ruduysSsds

¸
To see this, substitute in the second expression in (1) for Cτ = Sτ and rearrange. This

formula is the familiar stochastic dividend formula and implies that

St = E
Q
t

h
e−

R T
t (rs−ys)dsΦT

i
.

There are a number of important implications. First, the swap contracts are are

default free via the posting of collateral in the MTM value of the swap contract. Since

recovery is full, the contract is risk-free swap and is just a contract with a random
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termination time. Second, if you do not mark to the true price process, the contract has

residual risk. In this case, the counterparty grabs the collateral. It is straightforward in

this case to model recovery beyond collateral.

At initiation, the value of the swap is zero, S0 = 0 which implies that

sr−y0 =
EQt

h
e−

R T
0 (rs−ys)dsL (T, τ )

i
EQt

h
e−

R T
0 (rs−ys)ds

i .

3.4 Some Comparative Statics

From the previous sections, we can compare the swap rates of DS (1997), sR0 (R stands

for the risk-adjusted discount rate), the swap rates of Collin-Dufresne and Solnick (2000)

and He (2001), sr0 (r stands for the risk-adjusted discount rate) and the costly collateral

swap curve: sr−y0 (r stands for the risk-adjusted discount rate). If we define

P x (0, T ) = EQ0

h
e−

R T
0 xsds

i
we have that single-period swap rates are given by:

sR0 = E
Q
0 [l (T, τ)] +

covQ0

h
e−

R T
0 Rsds, L (T, τ)

i
PR (0, T )

sr0 = E
Q
0 [l (T, τ)] +

covQ0

h
e−

R T
0 rsds, L (T, τ )

i
P r (0, T )

sr−y0 = EQ0 [l (T, τ)] +
covQ0

h
e−

R T
0 (rs−ys)dsL (T, τ)

i
P r−y (0, T )

This shows the close relationship between the price of a futures contract on LIBOR, FL0 =

EQ0 [l (T, τ)], and the swap rates. Note that since the covariance between the interest

rate factor and LIBOR is typically negative (although it cannot be signed generically),

we have that sr−y0 , sr0, s
R
0 < F

L
0 . In the case of the collateralized swap, if the cost/benefit

to posting collateral is the the risk free rate, yt = rt, we have that s
r−y
0 = FL0 . If y (t) is

a nonrandom function of time, then sr−y0 = sr0. This results does not carry over to the

multiperiod case due to a convexity effect. In this case, sr−y0 > sr0.
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This characterization shows that the ordering of the swap rates depends on the

covariance of the discount factors with LIBOR. For example,

sr0 − sR0 =
covQ0

h
e−

R T
0 rsds, l (T, τ )

i
P r (0, T )

−
covQ0

h
e−

R T
0 Rsds, l (T, τ)

i
PR (0, T )

,

and if we assume that (which is commonly supported in the data),

covQ0

h
e−

R T
0 Rsds, l (T, τ )

i
< covQ0

h
e−

R T
0 rsds, l (T, τ)

i
we have sr0 − sR0 > 0 (since PR < P r) . This implies that discounting by r instead of R
results in higher swap rates, holding all else equal. Similarly, if9

covQ0

h
e−

R T
0 rsds, l (T, τ)

i
< covQ0

h
e−

R T
0 (rs−ys)ds, l (T, τ )

i
we have that

FL0 > s
r−y
0 > sr0 > s

R
0 .

9Consider for the condition

covQ0

h
e−

R T
0
rsds, l (T, τ)

i
< covQ0

h
e−

R T
0
(rs−ys)ds, l (T, τ)

i
.

A first order approximation to the exponential ex = 1+ x implies that

covQ0

"
1−

Z T

0

rsds, l (T, τ)

#
< covQ0

"
1−

Z T

0

rsds+

Z T

0

ysds, l (T, τ)

#

= covQ0

"
1−

Z T

0

rsds, l (T, τ)

#
+ covQ0

"Z T

0

ysds, l (T, τ)

#

and thus we have that sr−y0 > sr0 if cov
Q
0

hR T
0
ysds, l (T, τ)

i
> 0. Since L (T, τ) = 1

τ

h
1

P (T,τ) − 1
i
where

PR (T, τ) = exp
¡
α (τ) + βr (τ) rT + βδ (τ) δT

¢
and βr,βδ < 0 we have that

covQ0

"Z T

0

ysds, l (T, τ)

#
∝ covQ0

"Z T

0

ysds, exp
¡
(−βr (τ)) rT +

¡−βδ (τ)¢ δT ¢#

≈ covQ0
"Z T

0

ysds, (−βr (τ)) rT +
¡−βδ (τ)¢ δT# .

Thus if yt ↑⇒ rT ↑ and/or yt ↑⇒ δT ↑ the condition will be satisfied.
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We can also represent the collateralized swap rate as: (St
¡
sr−y0

¢
is the value of a

seasoned swap struck at sr−y0 )

sr−y0 =
EQ0

hR T
0
e−

R t
0 rsdsytSt

¡
sr−y0

¢
dt+ e−

R T
0 rsdsl (T, τ)

i
P r (0, T ))

(3)

=
EQ0

h
e−

R T
0 rsdsl (T, τ)

i
P r (0, T ))

+
EQ0

hR T
0
e−

R t
0 rsdsytSt

¡
sr−y0

¢
dt
i

P r (0, T ))
(4)

= sr0 ++

hR T
0
EQ0

n
e−

R t
0
rsdsytSt

¡
sr−y0

¢o
dt
i

P r (0, T ))
(5)

Provided EQ0
h
e−

R t
0 rsdsytSt

i
> 0, sr−y0 > sr0.

4 Empirical

We consider the following model for the risk-free and LIBOR/swap term structure:

drt = kr (θt − rt) dt+ σrdW
r
t (P)

dθt = kθ (θθ − θt) dt+ σθdW
θ
t (P)

dδt = κδ (θδ − δt) dt+ σδdW
δ
t (P)

dyt = [κy (θy − yt) + κr,yrt + κδ,yδt] dt+ σydW
y
t (P) .

We assume that all of the Brownian motions are correlated, corr
¡
W i
t ,W

j
t

¢
= ρij.

Gaussian specifications are common when modeling swap rates, see, e.g., Collin-Dufresne

and Solnik (2000), He (2001) and Liu, Longstaff and Mandel (2002). Essentially, the

model has a two factor specification for the risk-free term structure consisting of the short

rate (rt) and its long run mean (θt) and two factor specification for the LIBOR/swap

market where δt is the instantaneous spread to LIBOR and yt is the cost of posting

collateral. Note that in our specification yt only affects swap rates.

We assume that under the Q-measure, we assume that dW i
t (P) = λiκi

σi
dt+ dW i

t (Q)
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which implies that

drt = kr
¡
θQr − rr

¢
dt+ σrdW

r
t (Q)

dθt = kθ
¡
θQθ − rt

¢
dt+ σθdW

θ
t (P)

dδt =
£
κδ
¡
θQδ − δt

¢
+ κr,δrt

¤
dt+ σδdW

δ
t (Q)

dyt =
£
κy
¡
θQy − yt

¢
+ κr,yrt + κδ,yδt

¤
dt+ σydW

y
t (Q)

and θQr = θr − λr. With six-month resettlement, the various swap rates are given by:

sCol0 =

2NX
j=1

EQ0

·
e−

R j
2
0 (rs−ys)dsL

¡
j
2
, τ
¢¸

2NX
j=1

EQ0

·
e−

R j
2
0 (rs−ys)ds

¸

sCD−S0 =

2NX
j=1

EQ0

·
e−

R j
2
0 rsdsL

¡
j
2
, τ
¢¸

2NX
j=1

EQ0

·
e−

R j
2
0 rsds

¸

sDS0 =

2NX
j=1

EQ0

·
e−

R j
2
0 RsdsL

¡
j
2
, τ
¢¸

2NX
j=1

EQ0

·
e−

R j
2
0 Rsds

¸
The appendix provides expressions for these.

4.1 The Impact of Collateral

To guage the potential impact of collateral, we first consider the parameter estimates

from Collin-Dufresne and Solnik (2000) who estimate a two-factor risk-free term struc-

ture and a single factor spread process. We assume that θt = θ, that is, we turn off

the central tendency factor. We consider a base case for the cost of collateral process

16



of κy = 1; θQy = 0.002 and σy = 0.01 and κry = κδy = ρr,y = ρδ,y = 0. This implies that

the mean cost of collateral is 20 basis points. Figure 1 provides the swap curves for the

three cases of interest, sr−y0 , sr0, and s
R
0 . Figure 2 considers the case where κ

r
y = 0.1 and

Figure 3 considers the case where κδy = 0.5.

There are a number of implications. First, there are significant differences between

the swap rates calculated by discounting at rt, sr0, and those calculated by discounting at

R, sR0 . Given that the typical bid-ask spread on a swap is a fraction of a basis point, this

implies that collateralization has a significant effect even if there is no cost of posting

collateral. For parameterizations in Collin-Dufresne and Solnik (2000), the difference

is on the order of 2 basis points at 10 years and 4 basis points at 30 years. For other

parameterizations, the effects can be quite large.

4.2 MLE Estimation

To estimate our model, we consider a two step procedure. In the first stage, we estimate

the 2-factor risk-free term structure using time series of 6-month Treasury bill rates

and 5, 7 and 10 year par rates. In the second stage, we take these parameters and the

state variables as given and estimate a two factor model for the LIBOR/swap market

using 6-month LIBOR and 5,7 and 10 year swap rates. The general model is a 4-factor

model and we had difficulties obtaining convergence and found the algorithm to be very

sensitive to starting values. The two step approach, while sacrificing some efficiency

(the extent to which the parameter estimates of the risk-free curve are effected by the

swap rates), is a more robust algorithm and has no convergence properties and is less

sensitive to starting values.

[To be completed]

4.3 The Time Series of the Cost of Collateral

[To be completed]
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5 Conclusions

This paper studied the impact of collateralization on swap rates. The impact of collater-

alization was shown to be very significant when the opportunity costs/benefits of posting

collateral are high. The impact is also significant when the risk premium is high. We

are currently exploring the consequences of collateralization on extracting zeroes from

the swap pricing model and the valuation of swaptions.
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Appendix: ODE’s

This appendix derives the ODE’s Throughout the appendix, we repeatedly rely on

the following useful formula from Duffie, Pan and Singleton (2000): if

dXt = µ (Xt) dt+ σ (Xt) dWt

and µ (Xt) = K0 + K1x, (σσ0)ij = (H0)ij + (H1)ij · x, R (x) = ρ · x then for u ∈ Cn,
x ∈ Rn, we have that

ψ (u,Xt, t, s) = Et
h
e−

R s
t
R(Xu)dueu·XT

i
= eα(s)+β(s)·x

·
β (t) = K 0

1β (t) +
1

2
β (s)0H1β (s)− ρ

·
α (t) = K 0

0β (s) +
1

2
β (s)0H0β (s)

and α (0) = β (0) = 0.

Given our model,

drt = kr (θt − rr) dt+ σrdW
r
t (Q)

dθt = kθ
¡
θQθ − θt

¢
dt+ σθdW

θ
t (P)

dδt = κδ
¡
θQδ − δt

¢
dt+ σδdW

δ
t (Q)

dyt =
£
κy
¡
θQy − yt

¢
+ κr,yrt + κδ,yδt

¤
dt+ σydW

y
t (Q)

in the form above we have that X 0
t = [rt, θt, δt, yt]

0,

K0 =


0

κθθθ

κδθδ

κyθy

 ,

K1 =


−κr κr 0 0

0 −κθ 0 0

0 0 −κδ 0

κry 0 κδy −κy
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and

H0 =


σ2r σrσθρr,θ σrσδρr,δ σrσyρr,y

σrσθρr,θ σ2θ σθσδρδ,θ σθσyρδ,y

σrσδρr,δ σθσδρδ,θ σ2δ σδσyρδ,y

σrσyρr,y σθσyρθ,y σδσyρδ,y σ2y

 .
To compute swap values, we need to compute the following expectations:

EQ0

h
e−

R T
0 xsdsL (j/2, τ)

i
and EQ0

h
e−

R T
0 xsds

i
for xs = Rs, rs, rs − ys.
In this model, 6-month LIBOR is given by Lt = 2

h
1

PR(t,t+1/2)
− 1
i
and

PR (t, t+ s) = EQt

h
e−

R t+s
t (rs+δs)ds

i
= exp

¡
αR (s) + βR (s)

0Xt
¢

where βR =
£
βrR, β

θ
R,β

δ
R, β

y
R

¤
, ρR = [1, 0, 1, 0] and αR (0) = βR (0) = 0. This implies that

βyR (s) = 0 for all s. Second, we have that

P r (t, t+ s) = EQt

h
e−

R t+s
t rsds

i
= exp

¡
αr (s) + βr (s)

0Xt
¢

βr =
£
βrr , β

θ
r , β

δ
r , β

y
r

¤
, ρr = [1, 0, 0, 0] and we have that βyr (s) = βδ

r (s) = 0 for all s.

Third,

P r−y (t, t+ s) = EQt
h
e−

R t+s
t (rs−ys)ds

i
= exp

¡
αr−y (s) + βr−y (s)

0Xt
¢

where βr−y =
£
βrr−y,β

θ
r−y,β

δ
r−y, β

y
r−y (s)

¤
and ρr−y = [1, 0, 0,−1].
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