Subsections


Term Structure Models

We now expand on the analysis of the term structure in chapter 3. As shown there, the term structure is best viewed as an abstract function of term to maturity, equally well described by the prices of zero coupon bonds (discount factors), yield on zero coupon bonds (spot rates) or forward rates. In the earlier case we considered two particular implementations of the term structure: A flat term structure or a term structure estimated by linear interpolations of the spot rates.

A number of alternative ways of estimating the term structure has been considered. Some are purely used as interpolation functions, while others are fully specified, dynamic term structure models. We show two examples of the first type, the approximating function proposed in Nelson and Siegel (1987) and a cubic spline used by e.g. McCulloch (1971). We also consider the term structure models of Cox et al. (1985) and Vasicek (1977).

The Nelson Siegel term structure approximation

Proposed by Nelson and Siegel (1987).


\begin{program}
% latex2html id marker 4547\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/termstru_yield_nels_sie.cc}
\end{program}


\begin{program}
% latex2html id marker 4552\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_nelson_siegel.h}
\end{program}


\begin{program}
% latex2html id marker 4557\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_nelson_siegel.cc}
\end{program}

Cubic spline.

Cubic splines are well known for their good interpolation behaviour.


\begin{program}
% latex2html id marker 4562\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/termstru_discfact_cubic_spline.cc}
\end{program}


\begin{program}
% latex2html id marker 4567\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_cubic_spline.h}
\end{program}


\begin{program}
% latex2html id marker 4572\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_cubic_spline.cc}
\end{program}


Cox Ingersoll Ross.

The Cox et al. (1985) model is the most well-known example of a continous time, general equilibrium model of the term structure.


\begin{program}
% latex2html id marker 4577\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/termstru_discfact_cir.cc}
\end{program}


\begin{program}
% latex2html id marker 4582\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_cir.h}
\end{program}


\begin{program}
% latex2html id marker 4587\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_cir.cc}
\end{program}


Vasicek


\begin{program}
% latex2html id marker 4592\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/termstru_discfact_vasicek.cc}
\end{program}


\begin{program}
% latex2html id marker 4597\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_vasicek.h}
\end{program}


\begin{program}
% latex2html id marker 4602\caption{}
\lgrindfile{/home/bernt/2003_algor/all_cc_tex_files/term_structure_class_vasicek.cc}
\end{program}

2003-10-22